All inkjet printed SnO2/ZrO2 transistors

نویسنده

  • Jaewon Jang
چکیده

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Abstract All Inkjet-Printed SnO 2 /ZrO 2 Transistors Transparent electronics has been considered as a critical key to solve problems exhibited by virtually all flat panel displays and solar cells. Transparent electronics is expected to allow for the realization of displays with high aperture ratio for high brightness. This will enable the embedding of system-level electronics directly onto the display glass. The minimization of light lost when going through multi-layer stack structures is a major opportunity for solar cells and particularly for transparent solar cells consisting of transparent photovoltaic units. Over the last decade, amorphous phase and poly crystalline metal oxides, including ZnO, In 2 O 3 , and SnO 2 and their ternary and quaternary alloys, have been considered as candidates for transparent electronics. Using conventional vacuum-based deposition techniques and lithography technology, metal oxide based transistors with field effect mobility values high enough for the simultaneous operation of integrated circuits, pixel drivers and peripheral drivers have been demonstrated. In addition, by combining transparent source, drain, and gate electrodes with a transparent insulator, fully transparent circuits can be fabricated. Normally, hetero-junction solar cells consist of an absorber layer, its metal contacts, window layers, and their metal contacts. Transparent metal oxide n-type conducting window layers can be fabricated with the aforementioned semiconductors (ZnO, In 2 O 3 or SnO 2). These layers provide a large band gap, excellent electronic transport properties, and easy metal contact formation. Among the aforementioned metal oxides SnO 2 has its own promising characteristics. It has a larger band-gap, lower melting point and higher bulk mobility Thus, a high-quality SnO 2 layer can potentially be created at a relatively low sintering temperature resulting in high performance transistor characteristics. The main goals of this field are to improve process throughput for large area panels, to lower fabrication cost and to improve device performance. Combining the aforementioned attractive properties of SnO 2 with the process benefits of inkjet printing, fully ink-jet printed SnO 2 TFTs were demonstrated as a good candidate …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully inkjet printed SnO2 gas sensor on plastic substrate

A tin dioxide (SnO2) sensor was fabricated by inkjet printing onto polyimide foil. Gold electrodes and heater were printed on each side of the substrate. A SnO2 based ink was developed by sol-gel method and jetted onto the electrodes. A final annealing at 400°C compatible with the polymeric transducers allowed to synthetize the SnO2 sensing film. Electrical measurements were carried out to char...

متن کامل

Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends

Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representat...

متن کامل

Inkjet-printed zinc tin oxide thin-film transistor.

Recently, there has been considerable interest in adapting printing approaches that are typically used in the graphic arts to the printing of electronic circuits and circuit components. We report the fabrication of solution-processed oxide transistors using inkjet printing. A zinc tin oxide sol-gel precursor is utilized as the ink for directly printing a thin uniform semiconducting layer. The p...

متن کامل

Electrical Properties of Synthesized Large-Area MoS<sub>2</sub> Field-Effect Transistors Fabricated with Inkjet-Printed Contacts

We report the electrical properties of synthesized large-area monolayer molybdenum disulfide (MoS2) field-effect transistors (FETs) with low-cost inkjet-printed Ag electrodes. The monolayer MoS2 film was grown by a chemical vapor deposition (CVD) method, and the topcontact Ag source/drain electrodes (S/D) were deposited onto the films using a low-cost drop-on-demand inkjet-printing process with...

متن کامل

Electrical Properties of Synthesized Large-Area MoS₂ Field-Effect Transistors Fabricated with Inkjet-Printed Contacts.

We report the electrical properties of synthesized large-area monolayer molybdenum disulfide (MoS2) field-effect transistors (FETs) with low-cost inkjet-printed Ag electrodes. The monolayer MoS2 film was grown by a chemical vapor deposition (CVD) method, and the top-contact Ag source/drain electrodes (S/D) were deposited onto the films using a low-cost drop-on-demand inkjet-printing process wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016